Reducing the Prediction Horizon in NMPC: An Algorithm Based Approach
نویسندگان
چکیده
In order to guarantee stability, known results for MPC without additional terminal costs or endpoint constraints often require rather large prediction horizons. Still, stable behavior of closed loop solutions can often be observed even for shorter horizons. Here, we make use of the recent observation that stability can be guaranteed for smaller prediction horizons via Lyapunov arguments if more than only the first control is implemented. Since such a procedure may be harmful in terms of robustness, we derive conditions which allow to increase the rate at which state measurements are used for feedback while maintaining stability and desired performance specifications. Our main contribution consists in developing two algorithms based on the deduced conditions and a corresponding stability theorem which ensures asymptotic stability for the MPC closed loop for significantly shorter prediction horizons.
منابع مشابه
Improved Optimization Process for Nonlinear Model Predictive Control of PMSM
Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...
متن کاملNonlinear Model Predictive Control for the Swing-up of a Rotary Inverted Pendulum
This paper presents the experimental implementation of a gradient-based nonlinear model predictive control (NMPC) algorithm to the swing-up control of a rotary inverted pendulum. The key attribute of the NMPC algorithm used here is that it only seeks to reduce the error at the end of the prediction horizon rather than finding the optimal solution. This reduces the computation load and allows re...
متن کاملGeneral Control Horizon Extension Method for Nonlinear Model Predictive Control
In the nonlinear model predictive control (NMPC) field, it is well-known that the multistep control approach is superior to the single-step approach when examining high-order nonlinear systems. In the multistep control approach, however, the online minimization of a 2-norm square objective function over a control horizon of length M always requires solving a set of complex polynomial equations,...
متن کاملComputationally Efficient Long Horizon Model Predictive Direct Current Control of DFIG Wind Turbines
Model predictive control (MPC) based methods are gaining more and more attention in power converters and electrical drives. Nevertheless, high computational burden of MPC is an obstacle for its application, especially when the prediction horizon increases extends. At the same time, increasing the prediction horizon leads to a superior response. In this paper, a long horizon MPC is proposed to c...
متن کاملNonlinear Model Predictive Control for Large Scale Systems
In the past decade the field of nonlinear model predictive control (NMPC) has witnessed steadily increasing attention from control practitioners. Its popularity comes from the fact that today’s processes need to be operated under much tighter performance specifications while at the same time more and more constraints, stemming for example from environmental and safety considerations, need to be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1105.3267 شماره
صفحات -
تاریخ انتشار 2011